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If D- uo< 0, the undisturbed and compressed regions are interchanged and 
we have a « backward-facing shock wave I). These two cases are illustrated 
in Fig. 1. 

Material is always accelerated in the direction of propagation of the shock 
wave. From eqs. (7)-(9) the change in mass flow or particle velocity can be 
calculated : 

(10) 

If D-uo> 0, ul-UO> 0; if D-uo< 0, uI-UO< o. 
Equation (9) contains the thermodynamics of the shock transition and is 

called the « Rankine-Hugoniot equation I) . For « normal» materials it can be 
satisfied only by compressive waves, Pl> Po. We arbitrarily define « normal» 
materials as those for which the adiabatic (p, V) relation in one-dimensional 
compression, sometimes called « uniaxial strain I), is concave upward. Most 
fluids are normal in this sense, and most solids are normal over a restricted 
range. For such materials the limitation of shock waves to compressive waves 
follows from both hydI'odynamic and thermodynamic considerations . .As to 
the latter, we find that by differentiating eq. (9) and combining it with the 
First and Second Laws of Thermodynamics an expression is obtained for 
entropy change along the Hugoniot : 

(11) 

where TI is temperature at (Pl' Vl). The bracket in cq. (11) is positive for 
all PI > Po if the Hugoniot is concave upward. This is illustrated in Fig. 2, 
where it is obvious that the slope of the chord from 0 to A is less in mag­
nitude than the slope of the tangent at A. 

The increase in entropy in the shock front is produced by the presence 
of dynamic or irreversible forces assodated with viscosity, stress-relaxation 
and the like. These forces are responsible for maintaining the linear relation 
between P and V in eq. (5): at any point of compression the total com­
pressive stress P in the x-direction is the sum of an equilibl'ium and of a dynamic 
contribution. A physically unreal but mathematically interesting pl'oblem is 
to let the dynamic stl'ess vanish and to represent the equilibrium stress by 
an equation of state, 

In the absence of other irreversible processes, such as heat conduction, the 
shock front then becomes a mathematical discontinuity connecting states 
(Po, V o, Uo, Eo) and (PI, VI' Ul , E l ) [1]. 
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Fig. 2. - Entropy increases with pressure for a normal material. 

A more realistic approximation is to add a viscous stress: 

(12) p = p(V, E)-o:dVfdt. 

If the dependence on E can be neglected, eqs. (5) and (12) together become 
a differential equation for the density profile in the shock front: 

(13) 

In case the E-dependence of eq. (12) cannot be neglected, eqs . (5), (6) and (12) 
provide a description of the profile. 

The sign of the entropy change in eq. (11) is directly related to the prop­
agation process. For the shock wave of Fig. 1, moving into stationary material 
(uo= 0): 

(14) 

provided (o2pfoV2)S> 0 at (Po , Yo) . The velocity of sound is defined as 
c = V(- opfoV)!. The identity between (opfoV)s and dpfdV on the Hugo­
niot at (Po , Yo) is possible because isentrope and Hugoniot have a second-order 
contact at the foot of the Hugoniot. This will be discussed later by ROYOE 

and KEELER. The inequality in (14) tells us that the shock wave overtakes 
any acoustic wave ahead of it. Under the same conditions a disturbance 
behind the shock front overtakes the shock, provided, of course, that both 
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